Evaluating multiloop Feynman integrals by Mellin-Barnes representation

نویسنده

  • V. A. Smirnov
چکیده

When calculating physical quantities that describe a given process one needs to evaluate a lot of Feynman integrals. After a tensor reduction based on some projectors (see, e.g., [1]) a given Feynman graph generates various scalar Feynman integrals that have the same structure of the integrand with various distributions of powers of propagators. A straightforward analytical strategy is to evaluate, by some methods, every scalar Feynman integral generated by the given graph. If the number of these integrals is small such strategy is reasonable. In non-trivial situations, where the number of different integrals can be at the level of hundreds and thousands, it is reasonable to follow a well-known advanced strategy: to derive, without calculation, and then apply integration by parts (IBP) [2] and Lorentz-invariance (LI) [3] identities between the given family of Feynman integrals as recurrence relations. The goal of this procedure is to express a general integral from the given family as a linear combination of some basic (master) integrals. Therefore the whole problem of evaluation is decomposed into two parts: solution of the reduction procedure and evaluation of the master Feynman integrals. There were several recent attempts to make the reduction procedure systematic: (i) Using the fact that the total number of IBP and LI equations grows faster than the number of independent Feynman integrals one can sooner

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AMBRE - a Mathematica package for the construction of Mellin-Barnes representations for Feynman integrals

The Mathematica toolkit AMBRE derives Mellin-Barnes (MB) representations for Feynman integrals in d = 4 − 2ε dimensions. It may be applied for tadpoles as well as for multileg and multiloop scalar and tensor integrals. AMBRE uses a loopby-loop approach and aims at lowest dimensions of the final MB representations. It integrates the package MB for the determination of the singularity structure i...

متن کامل

Some recent results on evaluating Feynman integrals

where ki, i = 1, . . . , h, are loop momenta and the denominators Er are either quadratic of linear with respect to ki and external momenta q1, . . . , qN . By default, the integrals are dimensionally regularized with d = 4− 2ǫ. If the number of Feynman integrals needed for a given calculation is small or/and they are simple, one evaluates, by some methods, every scalar Feynman integral of the ...

متن کامل

Numerical evaluation of tensor Feynman integrals in Euclidean kinematics

For the investigation of higher order Feynman integrals, potentially with tensor structure, it is highly desirable to have numerical methods and automated tools for dedicated, but sufficiently ‘simple’ numerical approaches. We elaborate two algorithms for this purpose which may be applied in the Euclidean kinematical region and in d = 4 − 2 dimensions. One method uses Mellin–Barnes representati...

متن کامل

Feynman integrals and multiple polylogarithms

In this talk I review the connections between Feynman integrals and multiple polylogarithms. After an introductory section on loop integrals I discuss the Mellin-Barnes transformation and shuffle algebras. In a subsequent section multiple polylogarithms are introduced. Finally, I discuss how certain Feynman integrals evaluate to multiple polylogarithms.

متن کامل

Evaluating Two-Loop massive Operator Matrix Elements with Mellin-Barnes Integrals

The use of Mellin-Barnes integrals became a widespread technique for calculating Feynman diagrams throughout the last years [ 1], in particular to calculate double and triple box-diagrams. In Ref. [ 2], it was possible to expand the scalar two-loop two-point function in all orders in the dimensional regularization parameter ε, using additionally the gluing operation of Feynman diagrams, defined...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004